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Dynamic Kinetic resolution in the microbial reduction of «-
monosubstituted B-oxoesters': the reduction of 2-carbethoxy-
cycloheptanone and 2-carbethoxy-cyclooctanone
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Abstract: The microbial reduction of the title compounds by various yeasts or filamentous
fungi strains affords the corresponding (15,2R)- and/or (1S,25)-hydroxyesters in good yield
and ee. The determination of their absolute configuration was achieved by transformation
into known 2-methylcycloalkanone stereoisomers. © 1997 Elsevier Science Ltd

The microbial reduction of racemic &-monosubstituted B-oxoesters, and among them cyclic B-
oxoesters, 1s known to afford some of the corresponding hydroxyesters with high diastereo- and
enantiomeric excesses?. This selectivity results from the fast equilibrium existing between both
enantiomers of the oxoester in the incubation conditions, and the occurrence in the microorganism
of either a single active dehydrogenase with a high stereospecificity (enantiomeric specificity and
stereogenic specificity) or several active enzymes, all of them having the same stereospecificity.
This methodology, used for the first time in the reduction of 2-carbethoxy -cyclopentanone and -
cyclohexanone® and which has been then extended to purely chemical resolution processes, has been
designated by the term of “dynamic kinetic resolution”*.

Baker’s yeast, being easily available as a grown biomass, 1s by far the most commonly used
microorganism. It catalyses the reduction of 5- or 6-membered ring cyclic B-oxoesters to give mostly
or exclusively cis-(lS,2R)-hydroxyesters3’7‘13 (Scheme 1). This stereospecificity is also observed for
the reduction of heterocyclic oxoesters having an oxygen atom', a sulfur atom'3-2% or a nitrogen
atom®2!=24 in the ring, and for the reduction of various bicyclic oxoesters®23-31. We have recently
proposed a model to explain this stereospecificity3!.
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Scheme 1.

Other microorganisms have been shown by us8 and others2”-32-33 to be able to reduce some of these
oxoesters with different stereospecificities (enantiospecificity and/or stereogenic specificity) and they
have been effectively used to prepare the corresponding hydroxyesters in good yield and to derive
from them useful asymmetric synthons>%34. As a continuation of our investigations on the microbial
reduction of cyclic B-oxoesters, we report now our results concerning the reduction of 7- and 8-
membered ring cyclic substrates 1 and 2, and the determination of the absolute configuration of the
hydroxyesters 3-6 respectively obtained.
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Table 1. Reduction of oxoesters 1 and 2 by yeasts and fungal microorganisms®

1 2
side- side-
Time products 3/5 3 5  Time products 4/6 4 6
Microorganims (h)? (%)4 ratiod (%oee)(%oee) (WP (%)-4 ratiod (% ee) (% ce)

Baker's yeast¢ 72 15 6832 99 99 8 - - - -
Saccharomyces montanus CBS 6772 72 12 54/46 99 93 96f 15 90/10 99 94
Rhodotorula mucilaginosa 24 23 7426 97 95 42 96 6040 97 92
Rhodotorula glutinis NRRL Y-1091 24 6 8713 97 94 24 30 70/30 98 94
Kloekera magna NRRL Y-1611 96 4 100/0 99 - & - - - -
Cunninghamella echinulata NRRL 36355 50 3 97/3 99 - 8 - - - -
Beauveria bassiana ATCC 7159 24 50 94/6 97 96 24 72 100/0 98 -
Mucor racemosus 24 0 45/55 89 92 24 4 11/89 99 96
Mucor griseocyanus ATCC 1207a 30 1 12/88 74 95 30 15 0100 - 88
Rhizopus arrhizus ATCC 11145 48 8 31469 89 97 48 19 44/56 99 93

Mortierella isabellina NRRL 1757 24 2 6733 9 96 72 60 50/50 96 91

@ Microorganisms were grown in 100 mL cultures for 60 h then substrate (100 mg) in ethanol solution (1 mL) was added b time
necessary for complete reduction, € mainly the decarboxylated cycloalkanone, and small amounts of the corresponding cycloalkanol.
d determined by GC on OV-1701 37 ¢ Lyophilised baker's yeast (Sigma type 11, 5 g) and glucose (2.5 g) in water (100 mL);
substrate added as in a. / partial reduction (.70%). & no reduction.
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Substrates 1 and 2 were obtained by carboxylation of the corresponding c:yc:]oalkamones35 . Analytical
samples of hydroxyesters were obtained by NaBH4 reduction, affording mixtures of the racemic
cis- and trans-diastereomers®. Microbial reductions were performed as previously described®. The
diastereomer ratio in the hydroxyesters produced was measured by GC analysis3’. Enantiomeric
excesses were determined after derivatization with (S8)-O-acetyllactyl chloride followed by GC
analysis®. Some representative results of a screening of yeasts and fungal microorganisms are
summarised in Table 1: entries 1-5 refer to yeasts, whereas entries 6—12 refer to filamentous fungi.

The reduction times are much longer than those observed for the reduction of 5- or 6-membered
oxoesters: 2-carbethoxycyclohexanone was completely reduced in the same conditions in 4 hours.
Baker's yeast reduced slowly 1 and was unable to reduce 2, just as several microorganisms (yeasts or
fungi). Long reaction times often resulted in the formation of cycloheptanone or cyclooctanone as side-
products, as a consequence of oxoester hydrolysis and decarboxylation. The ketones thus produced
were very slowly reduced.

A mixture of both diastereomeric hydroxyesters was generally obtained. The biotransformation of 1
and 2 by B. bassiana afforded as unique reduction products the cis-hydroxyesters 3 and 4, in a relatively
short reaction time. Unfortunately, the simultaneous formation of large amounts of the corresponding
cycloalkanones made this strain unsuitable for the production of 3 or 4. K. magna and C. echinulata
reduced 1 with a high stereospecificity, affording 3 in 80 and 49% isolated yields, respectively. trans-
Hydroxyesters 5§ and 6 were obtained with the best diastereoselectivity using M. griseocyanus, but
the enantiomeric excesses obtained were lower than those observed for the reduction of 1 and 2 by
R. arrhizus and M. racemosus respectively. It is interesting to note that the enantiospecificity of the
reduction by M. racemosus, for example, is different for the cyclohexanone-derived oxoester® and 1
or 2: a gradual change of the cis:trans ratio (from 100:0 to 45:55 and 11:89, respectively), paralleling
the ring size increase, is observed.

We have reduced oxoesters 1 and 2 in a 1 g-scale with selected strains without special optimisation



Reduction of ot-monosubstituted B-oxoesters 1737

Table 2. Preparative microbial reductions? of 1 and 2

yield e [al®
Microorganisms Product (%) (%) {c 1, CHCI3)
K.magna 3 80 94 + 37
R. arrhizus 5 40 93 +15
R. glutinis ) 4 24 96 +36
M. racemosus 6 50 93 +22

a) Reductions were performed in 1 L cultures, as described in the screening conditions.

(Table 2) and have determined the configuration of the hydroxyesters 3—6 produced. Their relative
configurations were established by examination of 'H-NMR data and determination of coupling
constants3?, The assignment of their absolute configurations*? was carried out by transformation into
the corresponding known 2-methylcycloalkanones as shown in Scheme 2. The carboxyester group
of 3 and 6 was reduced to a hydroxymethyl group which was selectively tosylated to give 7 and
10 respectively. The tosylates were then reduced with LiAlH4 to 2-methylcycloheptanol 8 ([ot]p2°
+22; ¢ 1.6, acetone) or 2-methylcyclooctanol 11 ([at]p2° +19; ¢ 1, acetone). Jones’ oxidation of these
alcohols afforded the known ketones 9 ([]p2° —81 ¢ 1, CHCls. Lit. for S-enantiomer*': +84) and
12 ([«]p2? +39; ¢ 1, CHCIs. Lit. for S-enantiomer®*': +40).

QH QH
L COE CH0Ts ‘L £
1. LiAIH, LnAlH4 ; Cr03 Y
2. TsCl 73%
(15.2R)-3 (15,25)-7 (15,2R)-8 (R)-9
QH OH OH o
i ,CO,Et _ ,CH,OTs i CHy, CHj
1. LiAIH, L1A1H4 CrO;,
2. TsCl 75%
82%
(15,25)-6 (15,2R)-10 (15,28)-11 (5)-12

Scheme 2.

As such transformations take place without any modification of the initial stereochemistry, the
hydroxyesters 3 and 6 were identified as the (15,2R) and (15,25) stereoisomers, respectively. The
(15,2R) configuration of 4 and the (15,25) configuration of 5 were ascertained by C-2 epimerisation.
Treatment of the trans isomers § and 6 (obtained from microbial reductions) with DBU in acetonitrile
at 80°C during 48 h afforded an equilibrated mixture of diastereomeric hydroxyesters containing
the cis isomers 3 and 4, respectively, as demonstrated by GC analysis of their (5)-O-acetyllactate
derivatives8.

In conclusion, our results show some of the limitations of the baker’s yeast reduction of cyclic
B-oxoesters, and afford new indications to be reported in the proposed model’!. However, other
microorganisms are able to reduce 1 and 2 in respectable yields, often with a slightly lower
stereospecificity when compared to 2-carbethoxy-cyclohexanone. The asymmetric hydroxyesters we
have obtained are being currently used for the synthesis of various natural products.
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Cis/trans ratios (by GC analysis, see ref. 37) for the reduction of 1 and 2: 46/54 and 78/22
respectively.

Flexibond™ OV-1701 capillary column (Pierce Chem. Co, 15 m X 0.25 mm), 135°C, ret. times:
3, 7.08 min; 5, 8.41 min; 4, 12.4 min; 6, 13.7 min.

OV1701 capillary column, 135°C (10 min) then 135-170°C (2°C/min), ret. times: 3, 32.6 min; ent-
3, 32.9 min; ent-5, 34.0 min; 5, 34.4 min. BP20 capillary column (SGE, 25 m X 0.25 mm), 160°C
(20 min) then 160-190°C (4°C/min): ent-4, 51.2 min; 4, 51.8 min; ent-6, 54.4 min; 6, 55.2 min.
Values of coupling constants (CDCI3) for H-1 (CHOH, ddd, 3.9-4.1 ppm) and H-2 (CHCOzEt,
ddd, 2.4-2.6 ppm) in hydroxyesters: 3: Jy1H2=2.8 Hz; 5: JH1H2=9.2 Hz; 4: JHiH2=2.4 Hz; 6:
JH1H2=7 Hz.

Enantiomers of cis- and trans-hydroxyesters 3 and 5§ have been occasionally reported in the
literature (Xie, Z.-F.; Nakamura, I.; Suemune, H.; Sakai, K. J. Chem. Soc., Chem. Commun. 1988,
966, cited in Kitamura, M.; Ohkuma, T.; Tokunaga, M.; Noyori, R. Tetrahedron: Asymmetry 1990,
1, 1), but without any optical rotation measurement, and without clear and justified stereochemical
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assignments. However, the levorotatory optical rotations attributed to the 1R-1somers in the referred
paper are in agreement with our results.
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