PII: S0957-4166(97)00171-7

Dynamic kinetic resolution in the microbial reduction of α -monosubstituted β -oxoesters¹: the reduction of 2-carbethoxy-cycloheptanone and 2-carbethoxy-cyclooctanone

Sylvie Danchet, Carine Bigot, Didier Buisson* and Robert Azerad**

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRS, Université René
Descartes-Paris V, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France

Abstract: The microbial reduction of the title compounds by various yeasts or filamentous fungi strains affords the corresponding (1S,2R)- and/or (1S,2S)-hydroxyesters in good yield and ee. The determination of their absolute configuration was achieved by transformation into known 2-methylcycloalkanone stereoisomers. © 1997 Elsevier Science Ltd

The microbial reduction of racemic α -monosubstituted β -oxoesters, and among them cyclic β -oxoesters, is known to afford some of the corresponding hydroxyesters with high diastereo- and enantiomeric excesses². This selectivity results from the fast equilibrium existing between both enantiomers of the oxoester in the incubation conditions, and the occurrence in the microorganism of either a single active dehydrogenase with a high stereospecificity (enantiomeric specificity and stereogenic specificity) or several active enzymes, all of them having the same stereospecificity. This methodology, used for the first time in the reduction of 2-carbethoxy -cyclopentanone and -cyclohexanone³ and which has been then extended to purely chemical resolution processes, has been designated by the term of "dynamic kinetic resolution" $^{4-6}$.

Baker's yeast, being easily available as a grown biomass, is by far the most commonly used microorganism. It catalyses the reduction of 5- or 6-membered ring cyclic β -oxoesters to give mostly or exclusively cis-(1S,2R)-hydroxyesters^{3,7-13} (Scheme 1). This stereospecificity is also observed for the reduction of heterocyclic oxoesters having an oxygen atom¹⁴, a sulfur atom¹⁵⁻²⁰ or a nitrogen atom^{9,21-24} in the ring, and for the reduction of various bicyclic oxoesters^{9,25-31}. We have recently proposed a model to explain this stereospecificity³¹.

Scheme 1.

Other microorganisms have been shown by us⁸ and others^{27,32,33} to be able to reduce some of these oxoesters with different stereospecificities (enantiospecificity and/or stereogenic specificity) and they have been effectively used to prepare the corresponding hydroxyesters in good yield and to derive from them useful asymmetric synthons^{30,34}. As a continuation of our investigations on the microbial reduction of cyclic β -oxoesters, we report now our results concerning the reduction of 7- and 8-membered ring cyclic substrates 1 and 2, and the determination of the absolute configuration of the hydroxyesters 3-6 respectively obtained.

^{*} Corresponding author. Email: azerad@bisance.citi2.fr

Table 1. Reduction of oxoesters 1 and 2 by yeasts and fungal microorganisms^a

_	1				2					
	Time	side- products		3	5		side- products		4	6
Microorganims	(h)b	(%)c,d	ratio d	(% ee)	(% ee)	$(h)^b$	(%)c,d	ratio d	(% ee)	(% ee)
Baker's yeaste	72f	15	68/32	99	99	8	•	-	-	•
Saccharomyces montanus CBS 6772	72	12	54/46	99	93	96 ^f	15	90/10	99	94
Rhodotorula mucilaginosa	24	23	74/26	97	95	42	96	60/40	97	92
Rhodotorula glutinis NRRL Y-1091	24	6	87/13	97	94	24	30	70/30	98	94
Kloekera magna NRRL Y-1611	96	4	100/0	99	-	8	-	-	-	-
Cunninghamella echinulata NRRL 365:	5 50	3	97/3	99	-	8	-	-	-	-
Beauveria bassiana ATCC 7159	24	50	94/6	9 7	96	24	72	100/0	98	-
Mucor racemosus	24	0	45/55	89	92	24	4	11/89	99	96
Mucor griseocyanus ATCC 1207a	30	1	12/88	74	95	30	15	0/100	-	88
Rhizopus arrhizus ATCC 11145	48	8	31/69	89	97	48	19	44/56	99	93
Mortierella isabellina NRRL 1757	24	2	67/33	96	96	72	60	50/50	96	91

a Microorganisms were grown in 100 mL cultures for 60 h then substrate (100 mg) in ethanol solution (1 mL) was added b time necessary for complete reduction. c mainly the decarboxylated cycloalkanone, and small amounts of the corresponding cycloalkanol. d determined by GC on OV-1701 37. e Lyophilised baker's yeast (Sigma type II, 5 g) and glucose (2.5 g) in water (100 mL); substrate added as in a. f partial reduction (_70%). g no reduction.

Substrates 1 and 2 were obtained by carboxylation of the corresponding cycloalkanones³⁵. Analytical samples of hydroxyesters were obtained by NaBH₄ reduction, affording mixtures of the racemic cis- and trans-diastereomers³⁶. Microbial reductions were performed as previously described⁸. The diastereomer ratio in the hydroxyesters produced was measured by GC analysis³⁷. Enantiomeric excesses were determined after derivatization with (S)-O-acetyllactyl chloride followed by GC analysis³⁸. Some representative results of a screening of yeasts and fungal microorganisms are summarised in Table 1: entries 1–5 refer to yeasts, whereas entries 6–12 refer to filamentous fungi.

The reduction times are much longer than those observed for the reduction of 5- or 6-membered oxoesters: 2-carbethoxycyclohexanone was completely reduced in the same conditions in 4 hours. Baker's yeast reduced slowly 1 and was unable to reduce 2, just as several microorganisms (yeasts or fungi). Long reaction times often resulted in the formation of cycloheptanone or cyclooctanone as side-products, as a consequence of oxoester hydrolysis and decarboxylation. The ketones thus produced were very slowly reduced.

A mixture of both diastereomeric hydroxyesters was generally obtained. The biotransformation of 1 and 2 by B. bassiana afforded as unique reduction products the cis-hydroxyesters 3 and 4, in a relatively short reaction time. Unfortunately, the simultaneous formation of large amounts of the corresponding cycloalkanones made this strain unsuitable for the production of 3 or 4. K. magna and C. echinulata reduced 1 with a high stereospecificity, affording 3 in 80 and 49% isolated yields, respectively. trans-Hydroxyesters 5 and 6 were obtained with the best diastereoselectivity using M. griseocyanus, but the enantiomeric excesses obtained were lower than those observed for the reduction of 1 and 2 by R. arrhizus and M. racemosus respectively. It is interesting to note that the enantiospecificity of the reduction by M. racemosus, for example, is different for the cyclohexanone-derived oxoester⁸ and 1 or 2: a gradual change of the cis:trans ratio (from 100:0 to 45:55 and 11:89, respectively), paralleling the ring size increase, is observed.

We have reduced oxoesters 1 and 2 in a 1 g-scale with selected strains without special optimisation

Microorganisms	Product	yield (%)	ee (%)	[α] _D ²⁰ (c 1, CHCl ₃)
K.magna	3	80	94	+ 37
R. arrhizus	5	40	93	+15
R. glutinis	4	24	96	+36
M. racemosus	6	50	93	+22

Table 2. Preparative microbial reductions^a of 1 and 2

(Table 2) and have determined the configuration of the hydroxyesters 3–6 produced. Their relative configurations were established by examination of 1 H-NMR data and determination of coupling constants³⁹. The assignment of their absolute configurations⁴⁰ was carried out by transformation into the corresponding known 2-methylcycloalkanones as shown in Scheme 2. The carboxyester group of 3 and 6 was reduced to a hydroxymethyl group which was selectively tosylated to give 7 and 10 respectively. The tosylates were then reduced with LiAlH₄ to 2-methylcycloheptanol 8 ($[\alpha]_D^{20}$ +22; c 1.6, acetone) or 2-methylcyclooctanol 11 ($[\alpha]_D^{20}$ +19; c 1, acetone). Jones' oxidation of these alcohols afforded the known ketones 9 ($[\alpha]_D^{20}$ -81; c 1, CHCl₃. Lit. for S-enantiomer⁴¹: +84) and 12 ($[\alpha]_D^{20}$ +39; c 1, CHCl₃. Lit. for S-enantiomer⁴¹: +40).

Scheme 2.

As such transformations take place without any modification of the initial stereochemistry, the hydroxyesters 3 and 6 were identified as the (1S,2R) and (1S,2S) stereoisomers, respectively. The (1S,2R) configuration of 4 and the (1S,2S) configuration of 5 were ascertained by C-2 epimerisation. Treatment of the *trans* isomers 5 and 6 (obtained from microbial reductions) with DBU in acetonitrile at 80°C during 48 h afforded an equilibrated mixture of diastereomeric hydroxyesters containing the *cis* isomers 3 and 4, respectively, as demonstrated by GC analysis of their (S)-O-acetyllactate derivatives³⁸.

In conclusion, our results show some of the limitations of the baker's yeast reduction of cyclic β -oxoesters, and afford new indications to be reported in the proposed model³¹. However, other microorganisms are able to reduce 1 and 2 in respectable yields, often with a slightly lower stereospecificity when compared to 2-carbethoxy-cyclohexanone. The asymmetric hydroxyesters we have obtained are being currently used for the synthesis of various natural products.

References

1. Part VI in the series "Dynamic kinetic resolution in the microbial reduction of α-monosubstituted β-oxoesters". Part V, see ref. 31.

a) Reductions were performed in 1 L cultures, as described in the screening conditions.

- 2. For exhaustive reviews about the baker's yeast mediated reduction of β-oxoesters, see: Servi, S. Synthesis 1990, 1; Csuk, R.; Glänzer, B. I. Chem. Rev. 1991, 91, 49.
- 3. Deol, B. S.; Ridley, D. D.; Simpson, G. W. Aust. J. Chem. 1976, 29, 2459.
- 4. Noyori, R. Chem. Soc. Rev. 1989, 18, 187.
- 5. Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36.
- 6. Stecher, H.; Faber, K. Synthesis 1997, 1.
- 7. Fràter, G. Helv. Chim. Acta 1980, 63, 1383.
- 8. Buisson, D.; Azerad, R. Tetrahedron Lett. 1986, 27, 2631.
- 9. Seebach, D.; Roggo, S.; Maetzke, T. Helv. Chim. Acta 1987, 70, 1605.
- 10. Sato, T.; Maeno, H.; Noro, T.; Fujisawa, T. Chem. Lett. 1988, 1739.
- 11. Frater, G.; Günter, W.; Müller, U. Helv. Chim. Acta 1989, 72, 1846.
- 12. Gilbert, J. C.; Selliah, R. D. J. Org. Chem. 1993, 58, 6255.
- 13. Crisp, G. T.; Meyer, A. G. Tetrahedron 1995, 51, 5831.
- 14. Mori, K.; Ikunaka, M. Tetrahedron 1987, 43, 45.
- 15. Hoffmann, R. W.; Helbig, W.; Ladner, W. Tetrahedron Lett. 1982, 23, 3479.
- 16. Hoffmann, R. W.; Ladner, W.; Helbig, W. Liebigs Ann. Chem. 1984, 1170.
- 17. Hoffmann, R. W.; Weidmann, U. Liebigs Ann. Chem. 1985, 118, 3966.
- 18. Fujisawa, T.; Mobele, B. I.; Shimizu, M. Tetrahedron Lett. 1992, 33, 5567.
- 19. Ghosh, A. K.; Thompson, W. J.; Munson, P. M.; Liu, W.; Huff, J. Bioorg. Med. Chem. Lett. 1995, 5, 83.
- 20. Ghosh, A. K.; Liu, W. J. Org. Chem. 1995, 60, 6198.
- 21. Sibi, M. P.; Christensen, J. W. Tetrahedron Lett. 1990, 31, 5689.
- 22. Knight, D. W.; Lewis, N.; Share, A. C.; Haigh, D. Tetrahedron: Asymmetry 1993, 4, 625.
- 23. Cooper, J.; Gallagher, P. T.; Knight, D. W. J. Chem. Soc. Perkin Trans. I 1993, 1313.
- 24. Toyooka, N.; Yoshida, Y.; Momose, T. Tetrahedron Lett. 1995, 36, 3715.
- 25. Kitahara, T.; Mori, K. Tetrahedron Lett. 1985, 26, 451.
- 26. Kitahara, T.; Kurata, H.; Mori, K. Tetrahedron 1988, 44, 4339.
- 27. Mori, K.; Tsuji, M. Tetrahedron 1986, 42, 435.
- 28. Mori, K.; Tsujio, M. Tetrahedron 1988, 44, 2835.
- 29. Brooks, D. W.; Wilson, M.; Webb, M. J. Org. Chem. 1987, 52, 2244.
- 30. Buisson, D.; Cecchi, R.; Laffitte, J.-A.; Guzzi, U.; Azerad, R. Tetrahedron Lett. 1994, 35, 3091.
- 31. Abalain, C.; Buisson, D.; Azerad, R. Tetrahedron: Asymmetry 1996, 7, 2983.
- 32. Bhide, R.; Mortezaei, R.; Scilimati, A.; Sih, C. J. Tetrahedron Lett. 1990, 31, 4827.
- 33. Petzoldt, K.; Dahl, H.; Skuballa, W.; Gottwald, M. Liebigs Ann. Chem. 1990, 1087.
- 34. Buisson, D.; Azerad, R. Tetrahedron: Asymmetry 1996, 7, 9.
- 35. Krapcho, A. P.; Diamanti, J.; Cayen, C.; Bingham, R. Organic Synthesis, Vol V, 198.
- 36. Cis/trans ratios (by GC analysis, see ref. 37) for the reduction of 1 and 2: 46/54 and 78/22 respectively.
- 37. FlexibondTM OV-1701 capillary column (Pierce Chem. Co, 15 m \times 0.25 mm), 135°C, ret. times: 3, 7.08 min; 5, 8.41 min; 4, 12.4 min; 6, 13.7 min.
- 38. OV1701 capillary column, 135°C (10 min) then 135–170°C (2°C/min), ret. times: **3**, 32.6 min; *ent*-**3**, 32.9 min; *ent*-**5**, 34.0 min; **5**, 34.4 min. BP20 capillary column (SGE, 25 m × 0.25 mm), 160°C (20 min) then 160–190°C (4°C/min): *ent*-**4**, 51.2 min; **4**, 51.8 min; *ent*-**6**, 54.4 min; **6**, 55.2 min.
- 39. Values of coupling constants (CDCl₃) for H-1 (CHOH, ddd, 3.9–4.1 ppm) and H-2 (CHCO₂Et, ddd, 2.4–2.6 ppm) in hydroxyesters: 3: J_{H1H2} =2.8 Hz; 5: J_{H1H2} =9.2 Hz; 4: J_{H1H2} =2.4 Hz; 6: J_{H1H2} =7 Hz.
- 40. Enantiomers of *cis* and *trans*-hydroxyesters 3 and 5 have been occasionally reported in the literature (Xie, Z.-F.; Nakamura, I.; Suemune, H.; Sakai, K. *J. Chem. Soc., Chem. Commun.* 1988, 966, cited in Kitamura, M.; Ohkuma, T.; Tokunaga, M.; Noyori, R. *Tetrahedron: Asymmetry* 1990, 1, 1), but without any optical rotation measurement, and without clear and justified stereochemical

- assignments. However, the levorotatory optical rotations attributed to the 1R-isomers in the referred paper are in agreement with our results.
- 41. Meyers, A. I.; Williams, D. R.; Erickson, G. W.; White, S.; Druelinger, M. J. Am. Chem. Soc. 1981, 103, 3081.

(Received in UK 4 April 1997)